Mars 2020: Searching for signs of past life on the red planet
Launch:
Arrival:
Mission status: Active
Rovers sent to Mars – like Spirit, Opportunity, and Curiosity – are designed to be the eyes and hands of scientists. Using their miniaturized tools and instruments, they analyze hundreds of rock and soil samples right on the spot and send data back to Earth.
NASA’s Mars rover, Perseverance, will use a drill to collect samples in precise locations selected by terrestrial experts. For the first time on the red planet, these small quantities of rock will be sealed and stored for possible return to Earth.
Perseverance will be operating in Jezero Crater, a location just north of Mars’s equator, which is home to several different types of rock that will help scientists meet their mission objectives. As part of future missions, the samples collected by Perseverance could later be retrieved and brought to Earth for analysis with the full range of instruments available to scientists. The Mars 2020 mission will address fundamental questions about the potential for life on Mars.
A Mars Sample Return campaign would involve three phases:
- Sample selection and collection: the rover would select the samples, collect them and leave them at a specific location.
- Sample retrieval and transfer: another rover would go to the selected location to pick up the samples and bring them back to a rocket, or ascent vehicle.
- Sample return: the rocket would send the samples into orbit around Mars to be captured by another spacecraft for return to Earth.
Objectives
The objectives of the Mars 2020 mission are to:
- Determine whether habitable conditions ever existed on Mars
- Look for signs of past microbial life
- Learn more about Mars’s geology and current climate
- Prepare for human exploration
Scientists also learn about Mars through Martian meteorites, pieces of the red planet that have travelled here after being knocked off in cosmic collisions.
But surviving the journey through Earth’s atmosphere means that these fragments are made of strong material which does not fully represent all types of rock on Mars. In fact, scientists believe evidence of past life could be locked inside rocks on Mars that are different in makeup from the meteorites that have landed here on Earth.
By using the Mars 2020 rover to collect and store unchanged samples from specific areas on Mars’s surface for possible return to Earth, scientists are paving the way for a new understanding of our planetary neighbour.
Canada’s role in the mission
The Canadian Space Agency is funding three scientists’ participation in the Mars 2020 mission:
- Dr. Chris Herd, professor of Earth and atmospheric sciences at the University of Alberta, is working as a Participating Sample Scientist. Dr. Herd was selected by NASA as one of 10 experts designated to enhance the scientific value of the samples to be collected by the mission. He was also chosen to serve as one of two Returned Sample Scientist representatives on the mission’s Project Science Group. In this role, he is part of the team responsible for making critical operational and scientific decisions for the mission. Dr. Herd is contributing his expertise in the analysis of igneous rocks and Martian meteorites to select samples that are most likely to provide key information about Mars’s geological history.
- Dr. Mariek Schmidt, associate professor of Earth sciences at Brock University, is taking part in the mission as a Participating Scientist. Dr. Schmidt will use data collected by the rover’s PIXL instrument, which is designed to measure, at a very tiny scale, the elemental makeup of Martian rocks and soil. Her work focuses on the dust on the surface of rocks, and how the presence of dust influences the chemical measurements taken by PIXL and similar instruments. Dr. Schmidt will also use PIXL data to interpret the geological history of rocks encountered by the Perseverance rover.
- Dr. Richard Léveillé, adjunct professor, Department of Earth and Planetary Sciences at McGill University, is a Co-Investigator on the SuperCam instrument, an imager located on the “head” of the rover’s mast. The instrument examines rocks and soils for minerals and organic material, performing analyses on tiny samples from up to seven metres away. Dr. Léveillé will use data gathered by SuperCam to map levels of nitrogen trapped in Martian rock – a key clue for past habitability of Mars.
Igneous rocks are one of three main types of rocks (along with sedimentary and metamorphic). They form when magma (molten rock) cools and crystallizes. They can have many different compositions, depending on what kind of magma they come from, and can vary in appearance based on their cooling conditions.
(From:https://www.asc-csa.gc.ca/eng/astronomy/mars/missions/mars-2020.asp)
March 16, 2022
· admin · No Comments
Posted in: Others
Leave a Reply